Алфавитный подход к определению количества информации

При определении количества информации на основе уменьшения неопределенности наших знаний мы рассматриваем информацию с точки зрения содержания, ее понятности и новизны для человека. С этой точки зрения в опыте по бросанию монеты одинаковое количество информации содержится и в зрительном образе упавшей монеты, и в коротком сообщении "Орел", и в длинной фразе "Монета упала на поверхность земли той стороной вверх, на которой изображен орел".

Однако при хранении и передаче информации с помощью технических устройств целесообразно отвлечься от содержания информации и рассматривать ее как последовательность знаков (букв, цифр, кодов цветов точек изображения и так далее).

Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события). Тогда, если считать, что появление символов в сообщении равновероятно, по формуле (2.1) можно рассчитать, какое количество информации несет каждый символ.

Так, в русском алфавите, если не использовать букву ё, количество событий (букв) будет равно 32. Тогда:

32 = 2I, откуда I = 5 битов.

Каждый символ несет 5 битов информации (его информационная емкость равна 5 битов). Количество информации в сообщении можно подсчитать, умножив количество информации, которое несет один символ, на количество символов.

Количество информации, которое содержит сообщение, закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на количество знаков.

Вопросы для размышления

1. Пусть две книги на русском и китайском языках содержат одинаковое количество знаков. В какой книге содержится большее количество информации с точки зрения алфавитного подхода?